Unsupervised domain adaptation (UDA) via deep learning has attracted appealing attention for tackling domain-shift problems caused by distribution discrepancy across different domains. Existing UDA approaches highly depend on the accessibility of source domain data, which is usually limited in practical scenarios due to privacy protection, data storage and transmission cost, and computation burden. To tackle this issue, many source-free unsupervised domain adaptation (SFUDA) methods have been proposed recently, which perform knowledge transfer from a pre-trained source model to unlabeled target domain with source data inaccessible. A comprehensive review of these works on SFUDA is of great significance. In this paper, we provide a timely and systematic literature review of existing SFUDA approaches from a technical perspective. Specifically, we categorize current SFUDA studies into two groups, i.e., white-box SFUDA and black-box SFUDA, and further divide them into finer subcategories based on different learning strategies they use. We also investigate the challenges of methods in each subcategory, discuss the advantages/disadvantages of white-box and black-box SFUDA methods, conclude the commonly used benchmark datasets, and summarize the popular techniques for improved generalizability of models learned without using source data. We finally discuss several promising future directions in this field.
translated by 谷歌翻译
Weakly supervised semantic segmentation (WSSS) with image-level labels is a challenging task in computer vision. Mainstream approaches follow a multi-stage framework and suffer from high training costs. In this paper, we explore the potential of Contrastive Language-Image Pre-training models (CLIP) to localize different categories with only image-level labels and without any further training. To efficiently generate high-quality segmentation masks from CLIP, we propose a novel framework called CLIP-ES for WSSS. Our framework improves all three stages of WSSS with special designs for CLIP: 1) We introduce the softmax function into GradCAM and exploit the zero-shot ability of CLIP to suppress the confusion caused by non-target classes and backgrounds. Meanwhile, to take full advantage of CLIP, we re-explore text inputs under the WSSS setting and customize two text-driven strategies: sharpness-based prompt selection and synonym fusion. 2) To simplify the stage of CAM refinement, we propose a real-time class-aware attention-based affinity (CAA) module based on the inherent multi-head self-attention (MHSA) in CLIP-ViTs. 3) When training the final segmentation model with the masks generated by CLIP, we introduced a confidence-guided loss (CGL) to mitigate noise and focus on confident regions. Our proposed framework dramatically reduces the cost of training for WSSS and shows the capability of localizing objects in CLIP. Our CLIP-ES achieves SOTA performance on Pascal VOC 2012 and MS COCO 2014 while only taking 10% time of previous methods for the pseudo mask generation. Code is available at https://github.com/linyq2117/CLIP-ES.
translated by 谷歌翻译
Previous work on action representation learning focused on global representations for short video clips. In contrast, many practical applications, such as video alignment, strongly demand learning the intensive representation of long videos. In this paper, we introduce a new framework of contrastive action representation learning (CARL) to learn frame-wise action representation in a self-supervised or weakly-supervised manner, especially for long videos. Specifically, we introduce a simple but effective video encoder that considers both spatial and temporal context by combining convolution and transformer. Inspired by the recent massive progress in self-supervised learning, we propose a new sequence contrast loss (SCL) applied to two related views obtained by expanding a series of spatio-temporal data in two versions. One is the self-supervised version that optimizes embedding space by minimizing KL-divergence between sequence similarity of two augmented views and prior Gaussian distribution of timestamp distance. The other is the weakly-supervised version that builds more sample pairs among videos using video-level labels by dynamic time wrapping (DTW). Experiments on FineGym, PennAction, and Pouring datasets show that our method outperforms previous state-of-the-art by a large margin for downstream fine-grained action classification and even faster inference. Surprisingly, although without training on paired videos like in previous works, our self-supervised version also shows outstanding performance in video alignment and fine-grained frame retrieval tasks.
translated by 谷歌翻译
近年来,随着新颖的策略和应用,神经网络一直在迅速扩展。然而,尽管不可避免地会针对关键应用程序来解决这些挑战,例如神经网络技术诸如神经网络技术中仍未解决诸如神经网络技术的挑战。已经尝试通过用符号表示来表示和嵌入域知识来克服神经网络计算中的挑战。因此,出现了神经符号学习(Nesyl)概念,其中结合了符号表示的各个方面,并将常识带入神经网络(Nesyl)。在可解释性,推理和解释性至关重要的领域中,例如视频和图像字幕,提问和推理,健康信息学和基因组学,Nesyl表现出了有希望的结果。这篇综述介绍了一项有关最先进的Nesyl方法的全面调查,其原理,机器和深度学习算法的进步,诸如Opthalmology之类的应用以及最重要的是该新兴领域的未来观点。
translated by 谷歌翻译
Brain midline shift (MLS) is one of the most critical factors to be considered for clinical diagnosis and treatment decision-making for intracranial hemorrhage. Existing computational methods on MLS quantification not only require intensive labeling in millimeter-level measurement but also suffer from poor performance due to their dependence on specific landmarks or simplified anatomical assumptions. In this paper, we propose a novel semi-supervised framework to accurately measure the scale of MLS from head CT scans. We formulate the MLS measurement task as a deformation estimation problem and solve it using a few MLS slices with sparse labels. Meanwhile, with the help of diffusion models, we are able to use a great number of unlabeled MLS data and 2793 non-MLS cases for representation learning and regularization. The extracted representation reflects how the image is different from a non-MLS image and regularization serves an important role in the sparse-to-dense refinement of the deformation field. Our experiment on a real clinical brain hemorrhage dataset has achieved state-of-the-art performance and can generate interpretable deformation fields.
translated by 谷歌翻译
Deep neural networks (DNNs) are sensitive and susceptible to tiny perturbation by adversarial attacks which causes erroneous predictions. Various methods, including adversarial defense and uncertainty inference (UI), have been developed in recent years to overcome the adversarial attacks. In this paper, we propose a multi-head uncertainty inference (MH-UI) framework for detecting adversarial attack examples. We adopt a multi-head architecture with multiple prediction heads (i.e., classifiers) to obtain predictions from different depths in the DNNs and introduce shallow information for the UI. Using independent heads at different depths, the normalized predictions are assumed to follow the same Dirichlet distribution, and we estimate distribution parameter of it by moment matching. Cognitive uncertainty brought by the adversarial attacks will be reflected and amplified on the distribution. Experimental results show that the proposed MH-UI framework can outperform all the referred UI methods in the adversarial attack detection task with different settings.
translated by 谷歌翻译
GPS trajectories are the essential foundations for many trajectory-based applications, such as travel time estimation, traffic prediction and trajectory similarity measurement. Most applications require a large amount of high sample rate trajectories to achieve a good performance. However, many real-life trajectories are collected with low sample rate due to energy concern or other constraints.We study the task of trajectory recovery in this paper as a means for increasing the sample rate of low sample trajectories. Currently, most existing works on trajectory recovery follow a sequence-to-sequence diagram, with an encoder to encode a trajectory and a decoder to recover real GPS points in the trajectory. However, these works ignore the topology of road network and only use grid information or raw GPS points as input. Therefore, the encoder model is not able to capture rich spatial information of the GPS points along the trajectory, making the prediction less accurate and lack spatial consistency. In this paper, we propose a road network enhanced transformer-based framework, namely RNTrajRec, for trajectory recovery. RNTrajRec first uses a graph model, namely GridGNN, to learn the embedding features of each road segment. It next develops a spatial-temporal transformer model, namely GPSFormer, to learn rich spatial and temporal features along with a Sub-Graph Generation module to capture the spatial features for each GPS point in the trajectory. It finally forwards the outputs of encoder model into a multi-task decoder model to recover the missing GPS points. Extensive experiments based on three large-scale real-life trajectory datasets confirm the effectiveness of our approach.
translated by 谷歌翻译
Word alignment is to find translationally equivalent words between source and target sentences. Previous work has demonstrated that self-training can achieve competitive word alignment results. In this paper, we propose to use word alignments generated by a third-party word aligner to supervise the neural word alignment training. Specifically, source word and target word of each word pair aligned by the third-party aligner are trained to be close neighbors to each other in the contextualized embedding space when fine-tuning a pre-trained cross-lingual language model. Experiments on the benchmarks of various language pairs show that our approach can surprisingly do self-correction over the third-party supervision by finding more accurate word alignments and deleting wrong word alignments, leading to better performance than various third-party word aligners, including the currently best one. When we integrate all supervisions from various third-party aligners, we achieve state-of-the-art word alignment performances, with averagely more than two points lower alignment error rates than the best third-party aligner. We released our code at https://github.com/sdongchuanqi/Third-Party-Supervised-Aligner.
translated by 谷歌翻译
通过网络视频的快速增长,视频语言建模引起了很多关注。大多数现有方法都假定视频帧和文本描述是语义上关联的,并专注于视频级别的视频模型。但是,该假设通常是有两个原因的:(1)凭借视频内容丰富的语义,很难用单个视频级别的描述覆盖所有帧; (2)原始视频通常具有嘈杂/毫无意义的信息(例如,镜头,过渡或预告片)。尽管最近的许多作品部署了注意力来减轻此问题,但无关/嘈杂的信息仍然使得很难解决。为了克服此类挑战,我们提出了一个高效有效的模型,称为语言引导网络(LGDN),用于视频语言建模。与使用所有提取的视频帧的大多数现有方法不同,LGDN在语言监督下动态过滤了未对准或冗余的帧,并且每个视频仅获得2---4个显着帧,以进行交叉模式令牌级别的对准。在五个公共数据集上进行的广泛实验表明,我们的LGDN优于最先进的利润率。我们还提供了详细的消融研究,以揭示解决噪声问题的关键重要性,以启发未来的视频语言工作。
translated by 谷歌翻译
自我监督的神经语言模型最近在有机分子和蛋白质序列的生成设计中发现了广泛的应用,以及用于下游结构分类和功能预测的表示学习。但是,大多数现有的分子设计深度学习模型通常都需要一个大数据集并具有黑盒架构,这使得很难解释其设计逻辑。在这里,我们提出了生成分子变压器(GMTRANSFORMER),这是一种用于分子生成设计的概率神经网络模型。我们的模型建立在最初用于文本处理的空白填充语言模型上,该模型在学习具有高质量生成,可解释性和数据效率的“分子语法”方面具有独特的优势。与其他基线相比,我们的模型在摩西数据集上的基准测试后获得了高新颖性和SCAF。概率生成步骤具有修补分子设计的潜力,因为它们有能力推荐如何通过学习的隐式分子化学指导,并通过解释来修饰现有分子。可以在https://github.com/usccolumbia/gmtransformer上自由访问源代码和数据集
translated by 谷歌翻译